3.2.28 \(\int \frac {\sec ^2(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx\) [128]

Optimal. Leaf size=108 \[ -\frac {\tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {\tan (c+d x)}{d \sqrt {a+a \cos (c+d x)}} \]

[Out]

-arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d/a^(1/2)+arctanh(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/(a+a*cos(
d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)+tan(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 108, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2858, 3064, 2728, 212, 2852} \begin {gather*} \frac {\tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

-(ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]/(Sqrt[a]*d)) + (Sqrt[2]*ArcTanh[(Sqrt[a]*Sin[c + d*
x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d) + Tan[c + d*x]/(d*Sqrt[a + a*Cos[c + d*x]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2858

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp
[(-d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] - Dist[
1/(2*b*(n + 1)*(c^2 - d^2)), Int[(c + d*Sin[e + f*x])^(n + 1)*(Simp[a*d - 2*b*c*(n + 1) + b*d*(2*n + 3)*Sin[e
+ f*x], x]/Sqrt[a + b*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
 b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 3064

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {\sec ^2(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx &=\frac {\tan (c+d x)}{d \sqrt {a+a \cos (c+d x)}}-\frac {\int \frac {(a-a \cos (c+d x)) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{2 a}\\ &=\frac {\tan (c+d x)}{d \sqrt {a+a \cos (c+d x)}}-\frac {\int \sqrt {a+a \cos (c+d x)} \sec (c+d x) \, dx}{2 a}+\int \frac {1}{\sqrt {a+a \cos (c+d x)}} \, dx\\ &=\frac {\tan (c+d x)}{d \sqrt {a+a \cos (c+d x)}}+\frac {\text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}-\frac {2 \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}\\ &=-\frac {\tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {\tan (c+d x)}{d \sqrt {a+a \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 25.95, size = 1540, normalized size = 14.26 \begin {gather*} \frac {\left (\frac {1}{4}-\frac {i}{4}\right ) \left (1+e^{i c}\right ) \left (\sqrt {2}-(1-i) e^{\frac {i c}{2}}+(16-16 i) e^{\frac {3 i c}{2}+i d x}+(20+20 i) \sqrt {2} e^{2 i c+\frac {3 i d x}{2}}-(34-34 i) e^{\frac {5 i c}{2}+2 i d x}-(20+20 i) \sqrt {2} e^{3 i c+\frac {5 i d x}{2}}+(16-16 i) e^{\frac {7 i c}{2}+3 i d x}+(4+4 i) \sqrt {2} e^{4 i c+\frac {7 i d x}{2}}-(1-i) e^{\frac {9 i c}{2}+4 i d x}+8 i e^{\frac {1}{2} i (c+d x)}-16 \sqrt {2} e^{i (c+d x)}-40 i e^{\frac {3}{2} i (c+d x)}+34 \sqrt {2} e^{2 i (c+d x)}+40 i e^{\frac {5}{2} i (c+d x)}-16 \sqrt {2} e^{3 i (c+d x)}-8 i e^{\frac {7}{2} i (c+d x)}+\sqrt {2} e^{4 i (c+d x)}-(4+4 i) \sqrt {2} e^{\frac {1}{2} i (2 c+d x)}\right ) x \cos \left (\frac {c}{2}+\frac {d x}{2}\right )}{\left ((-1-i)+\sqrt {2} e^{\frac {i c}{2}}\right ) \left (-1+e^{i c}\right ) \left (i-2 \sqrt {2} e^{\frac {1}{2} i (c+d x)}-4 i e^{i (c+d x)}+2 \sqrt {2} e^{\frac {3}{2} i (c+d x)}+i e^{2 i (c+d x)}\right )^2 \sqrt {a (1+\cos (c+d x))}}+\frac {i \text {ArcTan}\left (\frac {\cos \left (\frac {c}{4}+\frac {d x}{4}\right )-\sin \left (\frac {c}{4}+\frac {d x}{4}\right )-\sqrt {2} \sin \left (\frac {c}{4}+\frac {d x}{4}\right )}{-\cos \left (\frac {c}{4}+\frac {d x}{4}\right )+\sqrt {2} \cos \left (\frac {c}{4}+\frac {d x}{4}\right )-\sin \left (\frac {c}{4}+\frac {d x}{4}\right )}\right ) \cos \left (\frac {c}{2}+\frac {d x}{2}\right )}{\sqrt {2} d \sqrt {a (1+\cos (c+d x))}}+\frac {i \text {ArcTan}\left (\frac {\cos \left (\frac {c}{4}+\frac {d x}{4}\right )+\sin \left (\frac {c}{4}+\frac {d x}{4}\right )-\sqrt {2} \sin \left (\frac {c}{4}+\frac {d x}{4}\right )}{\cos \left (\frac {c}{4}+\frac {d x}{4}\right )+\sqrt {2} \cos \left (\frac {c}{4}+\frac {d x}{4}\right )-\sin \left (\frac {c}{4}+\frac {d x}{4}\right )}\right ) \cos \left (\frac {c}{2}+\frac {d x}{2}\right )}{\sqrt {2} d \sqrt {a (1+\cos (c+d x))}}-\frac {2 \cos \left (\frac {c}{2}+\frac {d x}{2}\right ) \log \left (\cos \left (\frac {c}{4}+\frac {d x}{4}\right )-\sin \left (\frac {c}{4}+\frac {d x}{4}\right )\right )}{d \sqrt {a (1+\cos (c+d x))}}+\frac {2 \cos \left (\frac {c}{2}+\frac {d x}{2}\right ) \log \left (\cos \left (\frac {c}{4}+\frac {d x}{4}\right )+\sin \left (\frac {c}{4}+\frac {d x}{4}\right )\right )}{d \sqrt {a (1+\cos (c+d x))}}+\frac {\cos \left (\frac {c}{2}+\frac {d x}{2}\right ) \log \left (2-\sqrt {2} \cos \left (\frac {c}{2}+\frac {d x}{2}\right )-\sqrt {2} \sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right )}{2 \sqrt {2} d \sqrt {a (1+\cos (c+d x))}}+\frac {\cos \left (\frac {c}{2}+\frac {d x}{2}\right ) \log \left (2+\sqrt {2} \cos \left (\frac {c}{2}+\frac {d x}{2}\right )-\sqrt {2} \sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right )}{2 \sqrt {2} d \sqrt {a (1+\cos (c+d x))}}+\frac {2 i \text {ArcTan}\left (\frac {2 i \cos \left (\frac {c}{2}\right )-i \left (-\sqrt {2}+2 \sin \left (\frac {c}{2}\right )\right ) \tan \left (\frac {d x}{4}\right )}{\sqrt {-2+4 \cos ^2\left (\frac {c}{2}\right )+4 \sin ^2\left (\frac {c}{2}\right )}}\right ) \cos \left (\frac {c}{2}+\frac {d x}{2}\right ) \cot \left (\frac {c}{2}\right )}{d \sqrt {a (1+\cos (c+d x))} \sqrt {-2+4 \cos ^2\left (\frac {c}{2}\right )+4 \sin ^2\left (\frac {c}{2}\right )}}-\frac {\sqrt {2} \cos \left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \left (-d x \cos \left (\frac {c}{2}\right )+2 \log \left (\sqrt {2}+2 \cos \left (\frac {d x}{2}\right ) \sin \left (\frac {c}{2}\right )+2 \cos \left (\frac {c}{2}\right ) \sin \left (\frac {d x}{2}\right )\right ) \sin \left (\frac {c}{2}\right )+\frac {4 i \sqrt {2} \text {ArcTan}\left (\frac {2 i \cos \left (\frac {c}{2}\right )-i \left (-\sqrt {2}+2 \sin \left (\frac {c}{2}\right )\right ) \tan \left (\frac {d x}{4}\right )}{\sqrt {-2+4 \cos ^2\left (\frac {c}{2}\right )+4 \sin ^2\left (\frac {c}{2}\right )}}\right ) \cos \left (\frac {c}{2}\right )}{\sqrt {-2+4 \cos ^2\left (\frac {c}{2}\right )+4 \sin ^2\left (\frac {c}{2}\right )}}\right )}{d \sqrt {a (1+\cos (c+d x))} \left (4 \cos ^2\left (\frac {c}{2}\right )+4 \sin ^2\left (\frac {c}{2}\right )\right )}+\frac {\cos \left (\frac {c}{2}+\frac {d x}{2}\right )}{d \sqrt {a (1+\cos (c+d x))} \left (\cos \left (\frac {c}{2}+\frac {d x}{2}\right )-\sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right )}-\frac {\cos \left (\frac {c}{2}+\frac {d x}{2}\right )}{d \sqrt {a (1+\cos (c+d x))} \left (\cos \left (\frac {c}{2}+\frac {d x}{2}\right )+\sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right )} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Sec[c + d*x]^2/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

((1/4 - I/4)*(1 + E^(I*c))*(Sqrt[2] - (1 - I)*E^((I/2)*c) + (16 - 16*I)*E^(((3*I)/2)*c + I*d*x) + (20 + 20*I)*
Sqrt[2]*E^((2*I)*c + ((3*I)/2)*d*x) - (34 - 34*I)*E^(((5*I)/2)*c + (2*I)*d*x) - (20 + 20*I)*Sqrt[2]*E^((3*I)*c
 + ((5*I)/2)*d*x) + (16 - 16*I)*E^(((7*I)/2)*c + (3*I)*d*x) + (4 + 4*I)*Sqrt[2]*E^((4*I)*c + ((7*I)/2)*d*x) -
(1 - I)*E^(((9*I)/2)*c + (4*I)*d*x) + (8*I)*E^((I/2)*(c + d*x)) - 16*Sqrt[2]*E^(I*(c + d*x)) - (40*I)*E^(((3*I
)/2)*(c + d*x)) + 34*Sqrt[2]*E^((2*I)*(c + d*x)) + (40*I)*E^(((5*I)/2)*(c + d*x)) - 16*Sqrt[2]*E^((3*I)*(c + d
*x)) - (8*I)*E^(((7*I)/2)*(c + d*x)) + Sqrt[2]*E^((4*I)*(c + d*x)) - (4 + 4*I)*Sqrt[2]*E^((I/2)*(2*c + d*x)))*
x*Cos[c/2 + (d*x)/2])/(((-1 - I) + Sqrt[2]*E^((I/2)*c))*(-1 + E^(I*c))*(I - 2*Sqrt[2]*E^((I/2)*(c + d*x)) - (4
*I)*E^(I*(c + d*x)) + 2*Sqrt[2]*E^(((3*I)/2)*(c + d*x)) + I*E^((2*I)*(c + d*x)))^2*Sqrt[a*(1 + Cos[c + d*x])])
 + (I*ArcTan[(Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4] - Sqrt[2]*Sin[c/4 + (d*x)/4])/(-Cos[c/4 + (d*x)/4] + Sqr
t[2]*Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4])]*Cos[c/2 + (d*x)/2])/(Sqrt[2]*d*Sqrt[a*(1 + Cos[c + d*x])]) + (I
*ArcTan[(Cos[c/4 + (d*x)/4] + Sin[c/4 + (d*x)/4] - Sqrt[2]*Sin[c/4 + (d*x)/4])/(Cos[c/4 + (d*x)/4] + Sqrt[2]*C
os[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4])]*Cos[c/2 + (d*x)/2])/(Sqrt[2]*d*Sqrt[a*(1 + Cos[c + d*x])]) - (2*Cos[c
/2 + (d*x)/2]*Log[Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4]])/(d*Sqrt[a*(1 + Cos[c + d*x])]) + (2*Cos[c/2 + (d*x
)/2]*Log[Cos[c/4 + (d*x)/4] + Sin[c/4 + (d*x)/4]])/(d*Sqrt[a*(1 + Cos[c + d*x])]) + (Cos[c/2 + (d*x)/2]*Log[2
- Sqrt[2]*Cos[c/2 + (d*x)/2] - Sqrt[2]*Sin[c/2 + (d*x)/2]])/(2*Sqrt[2]*d*Sqrt[a*(1 + Cos[c + d*x])]) + (Cos[c/
2 + (d*x)/2]*Log[2 + Sqrt[2]*Cos[c/2 + (d*x)/2] - Sqrt[2]*Sin[c/2 + (d*x)/2]])/(2*Sqrt[2]*d*Sqrt[a*(1 + Cos[c
+ d*x])]) + ((2*I)*ArcTan[((2*I)*Cos[c/2] - I*(-Sqrt[2] + 2*Sin[c/2])*Tan[(d*x)/4])/Sqrt[-2 + 4*Cos[c/2]^2 + 4
*Sin[c/2]^2]]*Cos[c/2 + (d*x)/2]*Cot[c/2])/(d*Sqrt[a*(1 + Cos[c + d*x])]*Sqrt[-2 + 4*Cos[c/2]^2 + 4*Sin[c/2]^2
]) - (Sqrt[2]*Cos[c/2 + (d*x)/2]*Csc[c/2]*(-(d*x*Cos[c/2]) + 2*Log[Sqrt[2] + 2*Cos[(d*x)/2]*Sin[c/2] + 2*Cos[c
/2]*Sin[(d*x)/2]]*Sin[c/2] + ((4*I)*Sqrt[2]*ArcTan[((2*I)*Cos[c/2] - I*(-Sqrt[2] + 2*Sin[c/2])*Tan[(d*x)/4])/S
qrt[-2 + 4*Cos[c/2]^2 + 4*Sin[c/2]^2]]*Cos[c/2])/Sqrt[-2 + 4*Cos[c/2]^2 + 4*Sin[c/2]^2]))/(d*Sqrt[a*(1 + Cos[c
 + d*x])]*(4*Cos[c/2]^2 + 4*Sin[c/2]^2)) + Cos[c/2 + (d*x)/2]/(d*Sqrt[a*(1 + Cos[c + d*x])]*(Cos[c/2 + (d*x)/2
] - Sin[c/2 + (d*x)/2])) - Cos[c/2 + (d*x)/2]/(d*Sqrt[a*(1 + Cos[c + d*x])]*(Cos[c/2 + (d*x)/2] + Sin[c/2 + (d
*x)/2]))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(469\) vs. \(2(91)=182\).
time = 0.17, size = 470, normalized size = 4.35

method result size
default \(\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-2 a \left (2 \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right )-\ln \left (\frac {4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right )-\ln \left (-\frac {4 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right )\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a +2 \sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}-\ln \left (\frac {4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a -\ln \left (-\frac {4 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a \right )}{a^{\frac {3}{2}} \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}\right ) \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(470\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2/(a+a*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

cos(1/2*d*x+1/2*c)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)*(-2*a*(2*2^(1/2)*ln(4/cos(1/2*d*x+1/2*c)*(a^(1/2)*(sin(1/2*d
*x+1/2*c)^2*a)^(1/2)+a))-ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)+a^(1/2)*2^(1/2)*(si
n(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a))-ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-a^(1/2)*2
^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-2*a)))*sin(1/2*d*x+1/2*c)^2+2*2^(1/2)*ln(4/cos(1/2*d*x+1/2*c)*(a^(1/2)*(
sin(1/2*d*x+1/2*c)^2*a)^(1/2)+a))*a+2*a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-ln(4/(2*cos(1/2*d*x+1/2*c
)+2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)+a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a))*a-ln(-4/(2*cos(1
/2*d*x+1/2*c)-2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-2*a))*a)/a
^(3/2)/(2*cos(1/2*d*x+1/2*c)+2^(1/2))/(2*cos(1/2*d*x+1/2*c)-2^(1/2))/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^
2)^(1/2)/d

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 18435 vs. \(2 (91) = 182\).
time = 0.72, size = 18435, normalized size = 170.69 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/4*((2*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 2*sqrt(2)*
log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) - log(2*cos(1/2*d*x + 1/2*c)
^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*c
os(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/
2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(
2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x
 + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(d*x + c)^4 + (2*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(
1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 2*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)
^2 - 2*sin(1/2*d*x + 1/2*c) + 1) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2
*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2
+ 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(
1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x
+ 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*
sin(d*x + c)^4 + 4*sqrt(2)*cos(1/2*d*x + 1/2*c)*sin(d*x + c)^3 + 4*(2*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin
(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 2*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c
)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*sin(1/2*d*x + 1/2*c) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*
x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*
c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2
*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x +
1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqr
t(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(d*x + c)^3 + ((2*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)
^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 2*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d
*x + 1/2*c) + 1) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) +
2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(
1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)
^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 2*s
in(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(d*x + c)^2 +
 (2*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 2*sqrt(2)*log(
cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) - log(2*cos(1/2*d*x + 1/2*c)^2 +
 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1
/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c)
 + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*s
in(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1
/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*sin(d*x + c)^2 - 4*sqrt(2)*cos(1/2*d*x + 1/2*c)*sin(d*x + c) + 2*
(2*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 2*sqrt(2)*log(c
os(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c)
- log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2
*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c)
- 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*co
s(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*
c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(d*x + c) + 2*sqrt(2)*log(cos(
1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 2*sqrt(2)*log(cos(1/2*d*x + 1/2*c)
^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 4*sqrt(2)*sin(1/2*d*x + 1/2*c) - log(2*cos(1/2*d*x
 + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2)
+ log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2
*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)...

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 236 vs. \(2 (91) = 182\).
time = 0.39, size = 236, normalized size = 2.19 \begin {gather*} \frac {{\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} + 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {2 \, \sqrt {2} {\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} - \frac {2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}} + 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{4 \, {\left (a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/4*((cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 + 4*sqrt(a*cos(d*x + c
) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 2*sqrt(2)*(a*cos(d*
x + c)^2 + a*cos(d*x + c))*log(-(cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(a) - 2*
cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))/sqrt(a) + 4*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(a
*d*cos(d*x + c)^2 + a*d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sec ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)**2/sqrt(a*(cos(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(co

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\cos \left (c+d\,x\right )}^2\,\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^2*(a + a*cos(c + d*x))^(1/2)),x)

[Out]

int(1/(cos(c + d*x)^2*(a + a*cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________